Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

نویسندگان

  • Sybil G Gotsch
  • Heidi Asbjornsen
  • Friso Holwerda
  • Gregory R Goldsmith
  • Alexis E Weintraub
  • Todd E Dawson
چکیده

The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The incidence and implications of clouds for cloud forest plant water relations.

Although clouds are the most recognisable and defining feature of tropical montane cloud forests, little research has focussed on how clouds affect plant functioning. We used satellite and ground-based observations to study cloud and leaf wetting patterns in contrasting tropical montane and pre-montane cloud forests. We then studied the consequences of leaf wetting for the direct uptake of wate...

متن کامل

Trees harvesting the clouds: fog nets threatened by climate change.

The major direct drivers of environmental change in mountains are relief, hydroclimate and land use. Mountain forests affected by persistent seasonal or annual fog are called montane cloud forests (Bubb et al. 2004). On the slopes of temperate mountains, the elevation of the cloud base marks the transition from mon-tane (hardwood-deciduous, lower-altitude) to cloud (conifer-evergreen, higher-al...

متن کامل

Isotopic values of the Amazon headwaters in Peru: comparison of the wet upper Río Madre de Dios watershed with the dry Urubamba-Apurimac river system.

RATIONALE The Amazon River is a huge network of long tributaries, and little is known about the headwaters. Here we present a study of one wet tropical Amazon forest side, and one dry and cold Atiplano plateau, originating from the same cordillera. The aim is to see how this difference affects the water characteristics. METHODS Different kind of water (spring, lake, river, rainfall) were samp...

متن کامل

Climatic impact of tropical lowland deforestation on nearby montane cloud forests.

Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica's Caribbean lowlands remain relatively cl...

متن کامل

Vegetation-zonation patterns across a temperate mountain cloud forest ecotone are not explained by variation in hydraulic functioning or water relations.

Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2014